Interstitial Atoms in Metal-Metal Bonded Arrays: The Synthesis and Characterization of Heptascandium Decachlorodicarbide, $\mathbf{S c}_{7} \mathrm{Cl}_{10} \mathbf{C}_{2}$, and Comparison with the Interstitial-Free $\mathbf{S c}_{\mathbf{7}} \mathbf{C l}_{10}{ }^{\text {* }}$

SHIOU-JYH HWU, JOHN D. CORBETT, and KENNETH R. POEPPELMEIER

Ames Laboratory \dagger and Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received June 5, 1984; in revised form August 17, 1984

Abstract

Reaction of Sc strips, ScCl_{3}, and graphite at $860-1000^{\circ} \mathrm{C}$ gives $\mathrm{Sc}_{3} \mathrm{Cl}_{10} \mathrm{C}_{2}$ in quantitative yields, with transport occurring at the higher temperatures; adventitious carbon will also produce the phase. The compound has been shown to be isostructural with $\mathrm{Er}_{7} \mathrm{I}_{10}$ by single-crystal X-ray diffraction ($a=$ 18.620 (4) $\AA, b=3.4975$ (6) $\AA, c=11.810$ (2) $\AA, \beta=99.81$ (2) ${ }^{\circ}$; space group $C 2 / m, Z=2, R=0.029, R_{w}$ $=0.046$ for 676 reflections, $\mathrm{Mo} K \alpha, 2 \theta<50^{\circ}$). The phase contains double chains of condensed scandium octahedra sharing edges with a carbon approximately centered in each ($\bar{d}(\mathrm{Sc}-\mathrm{C})=2.31 \AA$) together with isolated scandium atoms in a parallel chain of chloride octahedra. The arrangement is very similar to that in the previously known $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, from which the heavy atom arrangement can be derived by displacement of all metal atoms by $b / 2$ so as to convert chlorine functions on the metal chain from face-capping to edge-bridging. The driving force for this is thought to be the reduction of carbon-chlorine repulsive interactions. Core and valence XPS data for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}, \mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{Cl}_{2}, \mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$, ScCl_{3}, and Sc are presented to demonstrate the appearance of a carbide-like state for the interstitial, the presence of two different types of scandium in the first two compounds, the oxidation of the chain that accompanies the carbon insertion, and a substantial $\mathrm{Sc}-\mathrm{C}$ covalency. The latter arises through mixing of the interstitial's $2 s$ and $2 p$ valence orbitals with metal-metal bonding cluster orbitals of the same symmetry.

Introduction

The many metal-metal bonded clusters, infinite chains, and double metal sheets that are known in reduced halides and chalcogenides have historically been believed to be free of anything within the metalbounded interstices save for delocalized

[^0]electrons. However, an increasing number of examples of nonmetals within M_{6} cluster halides have been noted recently, first for a single hydrogen within $\mathrm{Nb}_{6} \mathrm{I}_{11}$ (1) and $\mathrm{CsNb}_{6} \mathrm{I}_{11}$ (2) and then for second-period nonmetals in isolated clusters such as $\mathrm{Sc}\left(\mathrm{Sc}_{6} \mathrm{Cl}_{12} \mathrm{~N}\right)$ (3) and in condensed clusters such as $\mathrm{Gd}_{3} \mathrm{Cl}_{3} \mathrm{C}$ (4) and $\mathrm{Gd}_{4} \mathrm{I}_{5} \mathrm{C}$ (5), ${ }^{1}$ The

[^1]infinite double-metal-layered monohalides that represent the two-dimensional limit of cluster condensation have turned out to be particularly amenable substrates for this variety of reaction, forming $\mathrm{Zr}_{2} X_{2} \mathrm{H}, M X \mathrm{H}$ (3, 8, 9), $M_{2} X_{2} \mathrm{C}(10,11)$, and $\mathrm{ZrXO} 0.3-0.4$ (12) with $X=\mathrm{Cl}, \mathrm{Br}$ and $M=\mathrm{Sc}, \mathrm{Y}$, or Zr . The nonmetal in this group is found in either the nominal tetrahedral (H, O) or octahedral (H, C) sites between the closepacked metal layers. The analogous lanthanide monohalides also form some derivatives of this sort (13).

The evident absence of interstitials in clusters composed of molybdenum and niobium family elements (except for hydrogen in the niobium iodides) probably results because of the small size of the metal and thence of the cavity available. On the other hand, the sizes of the d orbitals increase to the left in the periodic table and with a diminished number of cluster-based electrons for bonding, the clusters of earlier transition elements are larger and better able to accommodate small nonmetals without a great loss of metal-metal bonding through expansion. At the same time the nonmetals contribute bonding to a relatively electronpoor metal framework. Actually, this chemistry is not altogether unprecedented when considered in light of the properties of the metals themselves. Substantial amounts of these interstitials occur in α phase (metal) solutions for some of the same group III and IV elements, for example, in $\mathrm{YH}_{0.2}, \mathrm{ZrO}_{0.4}$, and $\mathrm{ZrN}_{0.3}$ (14), and many more binary but still metallic compounds are formed by these elements with a structural rearrangement of the parent metal. All of these reactions evidence strong metal-nonmetal interactions with substantial covalency, as has been demonstrated for the hydrides (15) and the carbides (16), for example.

Not surprisingly, some examples of interstitials within metal-bonded halide phases have been discovered serendipitously. The
most likely circumstances are the accidental inclusion of a sufficient amount of an unexpected impurity, carbonaceous for example, together with the formation of a well-crystallized product that can be readily recognized and separated even in low yield. A residual electron density in the middle of a cluster following an otherwise satisfactory crystallographic solution is often the first hint that something may be amiss. Although X-ray diffraction is somewhat insensitive for the precise identification of the interstitial atom involved, synthesis of the same phase in high yield can invariably be accomplished by the purposeful addition of the correct nonmetal provided some mechanism for crystal growth is available. Some of the phases noted above have also been obtained through systematic explorations of the ternary systems. Fortunately, there are also a significant number of cluster and condensed cluster phases of the same metals that appear quite free of adventitious impurity atoms.

The present article describes the discovery and characterization of such a phase $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ in which single carbon atoms are bound in the middle of all of the nominal Sc_{6} octahedra that constitute the infinite double chains through sharing trans and some side edges of the simple clusters. The carbonfree analog $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ is already known (17) with virtually identical metal chains but with a distinctly different arrangement of chlorine and of a separate scandium(III) chain. A better formulation that reflects the last feature is ${ }_{\infty}^{1}\left[\mathrm{Sc}^{\mathrm{II}} \mathrm{Cl}_{2}^{+} \mathrm{Sc}_{6} \mathrm{Cl}_{8}^{-}\right]$when some approximations are made regarding the assignment of bridging chlorines between the units. Other known scandium chlorides are the related ${ }_{\infty}^{1}\left[\mathrm{ScCl}_{2}^{+} \mathrm{Sc}_{4} \mathrm{Cl}_{6}^{-}\right]$with a single chain of edge-sharing scandium octahedra (18) and the double-metal-layered ScCl (19).

Some general properties of the condensed cluster systems containing the so-
called interstitial nonmetal atoms will also be considered for the chain and double-metal-sheet structures.

Experimental Procedures

The metal used was produced and distilled within the Ames Laboratory and had typical impurities (ppm atomic) of $\mathrm{O}-90$, $\mathrm{N}-10, \mathrm{H}-320, \mathrm{C}-236, \mathrm{~F}-185$, $\mathrm{Fe}-39$, $\mathrm{W}-15, \mathrm{Y}-2, \mathrm{Ce}-3$, $\mathrm{Nd}-7$, other lanthanide, <2. This material was used either as rolled strips about $1 \times 0.5 \times 0.02 \mathrm{~cm}$ or as $100-$ mesh powder produced by decomposition of the ground hydride in high vacuum at $700-750^{\circ} \mathrm{C}(\mathrm{H}: \mathrm{Sc}=0.09: 1)$. Spectrographic grade powdered graphite (National brand, Union Carbide Corp.) was used as a source of carbon. The ScCl_{3} preparation, typical reaction procedures in sealed Ta or Nb containers, the examination of products within the crystal-mounting glove box, the Guinier powder pattern techniques and least-squares lattice constant refinement therefrom, single-crystal X-ray diffraction techniques, and the photoelectron spectral measurements were carried out as previously described (12, 15, 17-20). The Guinier technique employing NBS silicon as an internal standard gave a and c lattice constants for NBS $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ that agreed with the reference values within standard deviations of 0.8 and 2.5 parts in 10^{4}. The structure factor calculations and full matrix, least-squares refinements were carried out with the program ALLS (21) and the Fourier series calculations with FOUR (22).

Syntheses

The phase that was ultimately identified as $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ was first seen as needles with a ruby-red reflectance that were obtained in low yield during an attempt to synthesize the composition " $\mathrm{RbSc}_{4} \mathrm{Cl}_{6}$ " (3) through reaction of $\mathrm{RbCl}, \mathrm{Sc}$ strips, and ScCl_{3} at
$1000 / 960^{\circ} \mathrm{C}$ for 5 weeks. The moisture-sensitive crystals were found in the hot end of the tube in a $10-15 \%$ yield. The principal new material otherwise was $\mathrm{Rb}_{3} \mathrm{Sc}_{2} \mathrm{Cl}_{9}$ while ScOCl was not evident. Weissenberg photos together with the initial tuning procedures on the diffractometer showed these new crystals to be quite similar to $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ (17) with the same space group ($\mathrm{C} 2 / m$) but with somewhat different values for one axis length and the monoclinic angle. The Guinier powder pattern of the new phase was quite different. ${ }^{2}$

The crystal structure solution (below) showed this new phase had a $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$-like double metal chain structures but with a distinctly different arrangement of both the chlorine atoms and the scandium(III) side chain and with a clear electron density residual in the center of each metal cluster within the chain. The last was initially taken to represent oxygen (and was refined as such) because of the rather pervasive character of ROCl oxychloride in this and other rare earth metal-rich systems where it is thought to come both from the reactants and from some outgassing of the silica jacket (23) unless this is flamed especially well before sealing. Microprobe analyses of three single crystals supported on a graphite disk gave good agreement for the chlo-rine-to-scandium ratio, 1.42 (3): 1 vs $1.43: 1$ for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, but the $\mathrm{O}: \mathrm{Cl}$ values ranged between 0.06 and $0.48: 1$. More importantly, attempts at direct synthesis in which ScOCl was purposely included gave inconsistent results, the " $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{O}_{2}$ " being found in some instances but not in many others. ScOCl was clearly mobile at these tempera-

[^2]tures so a kinetic explanation for the lack of success did not seem appropriate. A second structural result was meanwhile obtained for a crystal from a $5-10 \%$ yield in a reaction that also produced interstitial-free $\mathrm{Sc}_{5} \mathrm{Cl}_{8}$.

A clue to the correct identity of the interstitial atoms came from another reaction in which crystals of the phase in question were found together with single crystals of what was subsequently structurally refined as and shown to be $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ by its direct synthesis in high yield from metal, trichloride, and graphite (10). Reactions aimed at the synthesis of $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}_{x}$ from the same reactants (excess Sc strips) at $1010^{\circ} \mathrm{C}$ gave a mixture of $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ for $x \leq$ ~ 0.8, with a quantitative yield of large crystals of the latter at the correct chlorine-to-carbon stoichiometry ($x=0.4$). A third set of diffraction data was collected and refined for a single crystal from the last reac-
tion to confirm that the known phase was the same as studied twice before.
Reaction of the above starting materials (excess strips) for a week at $860^{\circ} \mathrm{C}$ is sufficient to give microcrystalline products of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, with transport yielding nice single crystals over a longer period near $1000^{\circ} \mathrm{C}$. A stoichiometric amount of powdered metal gives $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ and unreacted ScCl_{3} after 6 weeks at $860^{\circ} \mathrm{C}$, presumably representing a nonequilibrium situation. It appears that $\mathrm{Sc}_{5} \mathrm{Cl}_{8}, \mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, and $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ are adjacent line phases, with the yields at $1000^{\circ} \mathrm{C}$ depending principally on the relative amount of carbon present; characteristically, scandium strips in excess are needed for good yields. The preparation of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ instead of $\mathrm{Sc}_{5} \mathrm{Cl}_{8}$ is generally carried out at lower temperatures, $860-900^{\circ} \mathrm{C}$, and with powdered metal (17). A powdered scandium reactant also appears necessary to obtain ScCl .

TABLE I
Crystal and Refinement Data for Three Crystals of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, Space Group $C 2 / m\left(\sim 20^{\circ} \mathrm{C}\right.$)

	1^{a}				
Crystal size, mm	$0.5 \times 0.05 \times 0.02$	$0.4 \times 0.04 \times 0.02$		$0.5 \times 0.06 \times 0.03$	
Lattice parameters, \AA					
a	18.634 (2)	18.620 (4) ${ }^{\text {c }}$		18.613 (5)	
b	3.5131 (4)	3.4975 (6)		3.4960 (7)	
c	11.834 (1)	11.810 (2)		11.806 (2)	
β (deg)	99.77 (1)	99.81 (2)		99.78 (2)	
Cell vol. (\AA^{3})	763.4 (1)	757.9 (2)		757.1 (3)	
Octants measured	4	4		4	
2θ limit, deg. (MoKa)	50	50		55	
Indep. refl. ($>3 \sigma(I)$)	630	676		426	
\boldsymbol{R} (ave)	0.042	0.024		0.024	
Carbon occupancy	2.46 (5)	2.17 (5)	$2.0^{\text {d }}$	2.57 (8)	2.20 (4)
$\boldsymbol{B}\left(\AA^{2}\right)$	1.0 (1)	1.2 (2)	0.8 (1)	3.8 (5)	. $0.77^{\text {d }}$
\boldsymbol{R}	0.035	0.029	0.029	0.038	- 0.040
$\underline{R}_{\boldsymbol{w}}$	0.046	0.046	0.047	0.041	0.044
$\bar{d}, \mathrm{Sc}-\mathrm{C}, \AA$	2.33	2.			

[^3]TABLE II
Atom Parameters for $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, Crystal 2^{a}

	x	y	z	$B_{11}{ }^{b}$	B_{22}	B_{33}	B_{13}
Sc1	0.0	0.0	0.0	$0.76(6)$	$1.49(8)$	$0.86(7)$	$0.19(5)$
Sc2	$0.3464(1)$	0.0	$0.2676(1)$	$0.85(5)$	$0.63(5)$	$0.88(5)$	$0.25(4)$
Sc3	$0.2004(1)$	0.5	$0.2768(1)$	$0.75(5)$	$0.58(5)$	$0.79(5)$	$0.17(3)$
Sc4	$0.3190(1)$	0.5	$0.4928(1)$	$0.70(5)$	$0.41(5)$	$0.79(5)$	$0.19(4)$
Cl1	$0.4284(1)$	0.5	$0.3742(1)$	$0.88(6)$	$0.90(6)$	$1.23(6)$	$0.18(5)$
Cl 2	$0.0956(1)$	0.5	$0.3843(1)$	$0.79(6)$	$0.96(7)$	$1.03(6)$	$0.18(4)$
Cl 3	$0.1239(1)$	0.0	$0.1336(1)$	$1.37(6)$	$0.91(7)$	$1.32(6)$	$-0.24(5)$
$\mathrm{Cl4}$	$0.2871(1)$	0.5	$0.1255(1)$	$1.17(6)$	$0.78(6)$	$0.92(6)$	$0.20(4)$
Cl 5	$0.4519(1)$	0.0	$0.1243(1)$	$1.63(7)$	$0.91(7)$	$1.55(6)$	$0.72(5)$
Cc	$0.2613(3)$	0.0	$0.3745(5)$	$1.2(2)$			

${ }^{a}$ Space group $C 2 / m$ (No. 12).
${ }^{b} T=\exp \left[\left(-1 / 4\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right], B_{12}=B_{23}=0\right.$.
${ }^{c}$ Occupancy of 2.17 (5).

Structure Solutions

Although the cell parameters of the new phase were clearly different from those of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, a sharpened Patterson map showed that many of the same structural features remained according to the $u, 0, w$ and u, $1 / 2, w$ sections. The atomic coordinates for the related (see below) structure of $\mathrm{Er}_{7} \mathrm{I}_{10}$ (24) provided the correct model, and this refined uneventfully to a very satisfactory result. Crystal parameters and some refinement results for this and two crystals subsequently studied (and referred to in the previous section) are given in Table I. Absorption corrections were applied to all using a ϕ-scan method and the program ABSN (25), with scans being made at two different values of θ for the first two crystals ($\mu=47 \mathrm{~cm}^{-1}, 0.83<T<0.99$ for crystal 2). Secondary extinction corrections were found to be unnecessary. The final difreference maps were flat to well less than 1 e / \AA^{3} at all positions.

Refinement of diffraction data from a third crystal was completed in order to establish that the product made in high yield by the purposeful introduction of carbon
was identical to those twice studied that contained uncertain interstitials (though clearly the occupancies in these two cases refined to close to the correct values for carbon). The last study accomplished this purpose well although the standard deviations of the positional and thermal parameters were two to four times greater than obtained with either of the other crystals. The poorer result likely arose from somewhat lower crystal perfection relative to crystal 2 and, more importantly, because fewer reflections were observed with a $\theta-2 \theta$ scan mode and no monochromator (Table I). Weissenberg photos indicated the crystal quality was $2>3>1$ although the differences were not large and all would be characterized as satisfactory as to peak size and freedom from more than slight streaking. The question of different cell sizes will be considered later.

The refined structural parameters for the second crystal of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, which appears to be the best result of the three studied by all criteria, are listed in Table II. The observed and calculated structure factor data appears in Table III.

The composition of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, especially

TABLE III
Observed and Calculated Structure Factors ($\times 10$) For $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, Crystal 2

 $=$
1
1
3
5
6
7
9
9
1
2
3
4
3
7
9
7
0
1
2
3
4
5
6
7
8
1
2
5
7
0
3
4
5

 ANNNNOOI OUn-anor 4
$F O$
1940
141
239
275
215
133
233
380

Fig. 1. A section of the $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ structure viewed approximately along the metal chain [010] plus the atom numbering system. All atoms occur at $y=0$ or $1 / 2$, with pairs of circles corresponding to those with $y= \pm 1 / 2$. Heavy lines interconnect the metal atoms (small spheres). The remainder of the cell is generated by a C-centering condition $(x+1 / 2, y+1 / 2, z)$; an inversion center occurs at the midpoint of the Sc4Sc4 ${ }^{b}$ connections.
the identity and amount of the carbon interstitial, was established principally by the synthesis of the phase in substantially quantitative yield ($>95 \%$, with no other phases detected in Guinier patterns) by the on-stoichiometry reaction

$$
\begin{aligned}
10 \mathrm{ScCl}_{3}+ & 6 \mathrm{C}+11 \mathrm{Sc} \\
& \text { (excess, strips) } \rightarrow 3 \mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2} .
\end{aligned}
$$

The X-ray refinements agreed with this fairly well (Table I). In addition, the presence of a carbide-like $\mathrm{C} 1 s$ emission from the compound was established by photoelectron spectroscopy (below). Powder pattern data show that the same phase had been seen earlier (18) and found to have $\mathrm{Cl}: \mathrm{Sc}=1.40$ (7) on the basis of microprobe analyses.

Structure Description

Figure 1 shows the contents of approximately one-half of the C-centered unit cell as viewed along the short b axis but with the cell tilted slightly so the clusters and bridging functions may be discerned. All atoms occur at $y= \pm 1 / 2$ (double circles) or y $=0$ (single). The scandium atom arrangement, basically the same as in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, can be viewed as first generating elongated octahedra which share trans edges (Sc3-Sc4) so to form chains parallel to b. In addition, parallel pairs of these chains are fused through sharing of a pair of cis edges in each octahedron (Sc4-Sc4 ${ }^{b}$) to yield double chains. Carbon is near the center of each octahedron. Side and top views of the metal chain (plus carbon) are shown in Fig. 2 with all of the shared edges in heavy outline in the bottom drawing. One octahedron can be described as $(\mathrm{Sc} 2)(\mathrm{Sc} 3)_{2 / 2}(\mathrm{Sc} 4)_{2 / 3}(\mathrm{Sc} 4)_{1 / 3}$.

Two additional features define the structure, the halogen placement about both the metal chain and the isolated Sc 1 atoms which are located at the corners and at the center of the $(0,0,1)$ face. These arrangements are significantly different from those in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$. As can be seen in Fig. 1, chlorine bridges all exposed edges of the octahedra that comprise the chains to produce a ${ }_{\infty}^{1}\left[\mathrm{Sc}_{6} \mathrm{Cl}_{6}\right]$ unit. Second, the isolated Scl atoms which are again taken to be scandium(III) are surrounded by chlorine octahedra. Since these have the same period as the metal chain, the chlorine octahedra also share trans edges ($\mathrm{Cl} 5-\mathrm{Cl5}$) and generate commensurate $\mathrm{Sc} 1(\mathrm{Cl} 3)_{2}(\mathrm{Cl} 5)_{4 / 2}$ octahedral chains. These metal and Sc -based chains are not independent, however. All chlorine in the structure are three-coordinate to scandium, achieving this either through bridging pairs of edges of the fused metal octahedra along the chain ($\mathrm{Cl} 1,2,4$) or by being part of the $\mathrm{ScCl}_{2} \mathrm{Cl}_{4 / 2}$ chains and occupying the remaining, all-important exo positions on the metal chain. Thus the Cl 3 api-

Fig. 2. Two approximately normal views of the chain of metal octahedra in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ together with the centered carbon atoms. The 8% longer repeat along the chain repeat ($3.50 \AA$) is omitted for clarity. Shared edges between octahedra are in heavy outline in the lower view.
ces of the chlorine octahedra also bridge the side edges of the metal chain ($\mathrm{Sc} 3-$ $\mathrm{Sc} 3^{\prime}$), while the shared Cl 5 atoms are exo to each vertex of the metal chain at Sc 2 . Partition of the latter according to metal neighbors gives an approximate description as ${ }_{\infty}^{1}\left[\left(\mathrm{Sc}^{\mathrm{III}} \mathrm{Cl}_{2}\right)\left(\mathrm{Sc}_{6} \mathrm{Cl}_{8}\right)\right]$.

Bonding and nearest neighbor nonbonding distances are given in Table IV together with the corresponding distances in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$. The metal chains in the two structures are closely comparable, the presence of scan-dium-carbon bonding generally giving smaller and somewhat more regular metal polyhedra. Neglecting the long repeat distances for all atoms along the chain at ca. $3.50 \AA$, the average $\mathrm{Sc}-\mathrm{Sc}$ distance here is $3.24 \AA, 0.03 \AA$ less than without carbon, with the shared edges still the shortest, as is typical. The Sc3-Sc4 joins within the octahedral chains now alternate with carbon atoms and at $3.07 \AA$ are $0.05 \AA$ shorter than in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$. A more striking effect is a $0.105-\AA$ decrease in $\mathrm{Sc} 3-\mathrm{Sc} 4^{b}$. (The actual distances
within the octahedra, neglecting the long repeat, still vary over a range of $0.23 \AA$ or by 14%.)

The scandium-chlorine distances show nothing unusual although slightly shorter values for bridging chlorine on the chain are to those scandium atoms that are more exposed and have fewer metal neighbors. On the other hand, $\mathrm{Cl}-\mathrm{Cl}$ repulsions may be responsible; clusters and extended arrays are characteristically well-sheathed by the nonmetal (26), and the longer $\mathrm{Sc}-\mathrm{Cl}$ distances for $\mathrm{Cl} 1,2,4$ correlate quite well with the probable distortions arising from the shorter $\mathrm{Cl}-\mathrm{Cl}$ separations (Table IV). The exo $\mathrm{Sc}-\mathrm{Cl}$ distances are characteristically longer and also appear to be limited by $\mathrm{Cl}-$ Cl contacts.

The Sc -C distances seem quite reasonable, the $2.31-\AA$ average here comparing very well with $2.308(1) \AA(\times 6)$ in $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ (10, 11). The so-called monocarbide (NaCl type) is carbon-deficient with a composition near $\mathrm{Sc}_{2} \mathrm{C}$ and a lattice constant for an ap-

TABLE IV
Distances (\AA) in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ and in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}{ }^{a}$

${ }^{a}$ Ref. (16).
${ }^{b} 1 / 2-x, 1 / 2-y, 1-z$.
${ }^{c}$ All atoms repeat at the b axis length.
${ }^{d} 1 / 2-x, 1 / 2-y, z$.
${ }^{e} \leq 3.560 \AA$.
${ }^{f}$ Interchain distance.
parent NaCl -type subcell that corresponds to $2.36 \AA$ for $\mathrm{Sc}-\mathrm{C}$; the well-described $\mathrm{Sc}_{4} \mathrm{C}_{3}$ (anti- $\mathrm{Th}_{3} \mathrm{P}_{4}$ type) has an average Sc C distance of $2.24 \AA$ (27).

Structure Comparisons

$S c_{7} C l_{10}$. As described above, the doublemetal chains in the phase $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ shows a
remarkable similarity to those in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$. The remainder of the structure is distinctly different, however. Figure 3 compares $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ (left) and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ (right) in projection along the short b axes, with dotted atoms differing from open circles by $b / 2$. The chlorine elevations in the two views are taken to be the same. Their disposition about the scandium chain is such as to cap exposed triangular faces in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ but to bridge edges in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$, the change also being accompanied by the rotation of the isolated scandium(III) chains by $\sim 70^{\circ}$. The conversion of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ to $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ (or vice versa) can thus be accomplished by displacement of all metal atoms in the structure by $b / 2$ together with changes in the x and z coordinates of Cl 3 and Cl 5 so as to reestablish reasonable distances within shared chloride octahedra, the displacement of Sc1 serving to interconvert waist and apex functions. The clear change in chlorine placement about the exposed metal vertices of the chain on conversion from face to edge bridging chlorine (Fig. 3) lengthens the $\mathrm{Sc} 2-\mathrm{Cl} 5$ interchiain link by $0.19 \AA$, but causes a more drastic shortening of the Sc3-Cl3 bridging by $0.54 \AA$ owing to a clearly greater obstruction of the Sc3 vertex in the metal chain by chlorine atoms in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$. Much of the 6.8% decrease in cell volume accompanying the carbon addition can be associated with a decrease in height of the metal chain from carbon bonding together with tighter $\mathrm{Sc} 3-\mathrm{Cl} 3$ bridging and thence smaller separations between metal chains.

A fairly simple explanation can be discerned for the change from face- to edgebridging chlorine around the metal chains on introduction of carbon into the cluster, the reduction of carbon-chlorine interactions. The cluster centers in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ are only 2.88 and $3.01 \AA$ from Cl 2 and Cl 4 , respectively, or 2.86 and $2.89 \AA$ in a model with a carbide-like metal chain in the $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ arrangement, while the observed $\mathrm{C}-$

$\mathrm{Sc}_{7} \mathrm{Cl}_{10}$

$\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$

Fig. 3. Comparison of the $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ (left) (17) and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ (right) structures in projection along the metal chain with dotted atoms separated by $b / 2$ from the remainder. The two structures may be interconverted by displacement of all metal atoms by $b / 2$, changing the chlorine on the metal chain from face-capping to edge-bridging functions.

Cl separation in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ is $3.48 \AA$, the same as in $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$. The former separations seem to be well less than the sum of reasonable van der Waals radii when it is noted that chlorine is the order of $1.75 \AA$ in radius to other chlorines (Table IV). An electrostatic argument can also be used since both chlorine and carbon presumably bear some negative charge. Calculation of the Madelung part of the lattice energy (MAPLE) (28) for several different charge distributions indicate that the observed structure has up to a few percent greater lattice energy as well as a more uniform contribution to that by the three types of scandium atoms in the chain. In general, structures with metal octahedra that are face-capped by nonmetal are more likely to be destabilized by repulsions between the nonmetal and interstitial atoms centered in metal octahedra. The structures of $\mathrm{Gd}_{2} \mathrm{Cl}_{3}, \mathrm{Nb}_{6} \mathrm{I}_{11}$, and $\mathrm{Zr} X$ are also of this type, while a much larger number of clusters and chains contain face-capping halide. The transition from $3 \mathrm{R}-\mathrm{Zr} X$ structures to the 1T-type as in
$\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ on insertion of nonmetal into the octahedral site (below) is exactly analogous to the transition discussed here in terms of diminished halogen-interstitial interactions.
The new carbide phase also bears a considerable similarity to $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ in that it too exhibits significant variations in cell dimensions. About 16 sets of lattice constants have been refined for different preparations of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ using 16 to 27 Guinier reflections from each measured relative to powdered silicon as an internal standard. Seventy percent of these gave cell volumes within $\pm 1.1 \AA^{3}$ of the $757.5-\AA^{3}$ average for the second and third crystals studied by sin-gle-crystal means, the extremes in fact occurring for products of high-yield reactions. The remaining cell volumes grouped in the range of 761.3 to $763.4 \AA^{3}$ with the first crystal used to determine the structure providing the upper limit. Since members of this last group generally were found early in the investigation, some consideration was given to the presence of a different intersti-

TABLE V
Scandium Coordination Numbers and Scandium-Carbon Distances in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$

Scandium atom	Coordination number ${ }^{\text {a,b }}$			$\begin{gathered} \text { Distance } \\ \text { Sc-C } \\ (\AA) \end{gathered}$
	To Sc	To Cl	To C	
1	0	6	0	
2	4	5	1	2.18
3	5	4	2	2.28 ($\times 2$)
4	7	3	3	2.34
				$2.38(\times 2)$

[^4]tial atom or a mixture, although subsequent attempts to insert boron, nitrogen, or oxygen alone in this structure have been unsuccessful. However, a close comparison of the actual structural data from crystal one with that of crystal two (the better) suggests changes in crystal perfection may be responsible instead, the first being the poorer judging from Weissenberg films. In addition, the apparent thermal ellipsoids obtained for metal in the first crystal refinement were uniformly about twice as large and with standard deviations $15-20 \%$ greater than for the second. Likewise, thermal parameters for chlorine were about 10% larger and B_{22} for the isolated Sc 1 was 50% greater. In addition, the $\mathrm{Sc}-\mathrm{Sc}$ distances within the chain were all 0.02 to 0.03 \AA larger, but with $\mathrm{Sc}-\mathrm{Cl}$ differences larger by no more than $0.01 \AA$ and generally not significantly so. These observations are remarkably similar to those made earlier with respect to two different crystals of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ (17) even as to the relative sizes of the ellipsoids for Cl 3 and Cl 5 . Since there was no evidence whatsoever for interstitial atoms in the earlier structural results for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, we are inclined to prefer the same explana-
tion for the present variations, that is, intrinsic differences in imperfections among crystals with very anisotropic bonding. Whether hydrogen might cause such changes is still under investigation.

Several aspects of the carbon bonding bear comment. At first glance the $\mathrm{Sc}-\mathrm{C}$ distances (Table IV) seem quite irregular, but these turn out to vary plausibly with the total amount of bonding that can be inferred for each scandium atom based on distances. The metal octahedra are elongated along b and compressed normal to this along the shared edge $\mathrm{Sc} 3-\mathrm{Sc} 4$. The carbon is actually displaced $\sim 0.12 \AA$ in c from the waist of the octahedron toward Sc2 and Sc3 to produce the order $2<3<4^{b}<4$ in distances to scandium. As seen in the coordination number summary in Table V , this follows precisely the change in environment of scandium, there being closer carbon contacts with those metal atoms that have more chlorine and fewer scandium neighbors and therefore perhaps a higher charge. The introduction of carbon is also seen to produce a remarkable uniformity, six nonmetal nearest neighbors for all scandium atoms.

The process of cluster formation and condensation generally involves replacement of part of the chlorine about each metal in the parent halide, six in the case of the ScCl_{3}, by a greater number of metal atoms, i.e., five Sc substitute for two Cl on average to form the present structure, nine Sc for three Cl for ScCl (19), and finally twelve for all six in the metal. The $\mathrm{Sc}-\mathrm{Cl}$ separations remain remarkably constant throughout this, the additional electrons generally not screening the $\mathrm{Sc}-\mathrm{Cl}$ separations significantly, while the added and more numerous metals that replace chlorine occur at relatively long $\mathrm{Sc}-\mathrm{Sc}$ distances compared with the single-bond metal radius ($2.92 \AA$). The metal-bonded halides indeed appear to possess just exactly the distance-coordination number intermedi-
acy that one would expect between a salt and a delocalized metal (29).
$E r_{7} I_{10}$. Although the isomorphous relationship between $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ and $\mathrm{Er}_{7} \mathrm{I}_{10}$ does not immediately require that an interstitial impurity exists in the latter, some factors suggest this may be true. The iodide (24) was obtained in only small and irregular yields and showed some similar crystallographic problems, namely, a very elongated ellipsoid along $b(>3: 1)$ for an isolated Erl atom with a refined occupancy of only 0.70 . There was also a prominent residual in the middle of all metal octahedra that refined to 0.25 of an iodine ($R=0.055$). The authors noted that this site was also the position of a missing halogen atom in otherwise approximately close-packed layers that run parallel to (100) and that disorder or phasing errors might therefore contribute a false peak at this point. Extinction was said to be clearly evident but not corrected for, a condition that we have found can also lead to appreciable errors in Fourier synthesis maps.

Efficient filling of space allows a good number of these structures to be described in terms of close-packed anion arrays in which clustering of metal atoms in adjoining octahedral interstices occurs around a missing anion at the cluster center (17, 24, 30). This can be seen well in Fig. 2 in planes that run parallel to (001) for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$, closer to the ideal in the latter. Interestingly, the best close-packed planes in $\mathrm{Er}_{7} \mathrm{I}_{10}$ lie parallel to (100) instead (24) even though the last two compounds are nominally isomorphous in terms of relative atom positions and metal-halide placement. The metal chains in the two are quite similar, but the difference in the size of both atoms causes appreciable changes in the relative orientation of the metal and halogen chains, the interconnections between them showing some flexibility. Thus, the interchain placement defined by the angle between $\mathrm{Sc} 1-\mathrm{Cl} 3$ and $\mathrm{Sc} 3-\mathrm{Sc}^{b}$ differs by somewhat

Fig. 4. The carbon $1 s$ photoelectron spectra of Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ and $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ (11) on cellophane tape ($\mathrm{A} 1 K \alpha$).
over 30° between the two. Under the circumstances a close-packed description does not seem particularly useful.

Photoelectron Spectroscopy

Since X-ray scattering is relatively unspecific as to identity of the interstitial atom, it was considered desirable to establish that interstitial-like carbon was actually present in the new phase. Figure 4 shows the carbon $1 s$ spectrum ($\mathrm{Al} K \alpha$) from Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ relative to that of $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ where carbon is bound in octahedral interstices between double-metal-layers (10, 11). Clearly both samples are very similar in this respect with a carbide-like peak shifted about 3.1 eV to lower binding energy from the inevitable adventitious carbon used for calibration ($\equiv 285.0 \mathrm{eV}$). (The powdered Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ had been handled first in a prep box where it had been exposed to more abundant hydrocarbon impurities. Experience (31) indicates that this source dominates emission from the cellophane-tape substrate when good coverage is secured al-

TABLE VI
X-Ray Photoelectron Emission Data, eV ${ }^{a}$

	Sc	$\mathrm{Sc}_{7} \mathrm{Cl}_{10}$	$\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$	$\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}^{b}$	$\mathrm{ScCl}_{3}{ }^{c}$
$\mathrm{Cl} 3 p$		7.0	6.6		6.4
$\mathrm{Scm} \boldsymbol{m}^{d} 2 p_{3 / 2}$	398.7	398.8	401.0	400.8	
$2 p_{1 / 2}$	403.4	~ 403.4	~ 405.5	405.6	
$\mathrm{Scn} 2 p_{3 / 2}$		-403.9	-403.3		404.0
$2 p_{1 / 2}$		408.3	-407.7		408.5
$\mathrm{Cl} 2 p_{3 / 2}$	200.2	199.9	200.0	200.1	
$\mathrm{Scm} 2 p_{3 / 2}-\mathrm{Cl} 2 p_{3 / 2}$		198.6	201.1	200.8	
$\mathrm{Sc} 2 p_{3 / 2} \mathrm{Cl} 2 p_{3 / 2}$		203.7	203.4		203.9

${ }^{a}$ Referenced to $\mathrm{C}(1 s)=285.0 \mathrm{eV}$.
${ }^{b}$ Ref. (II).
${ }^{c}$ Calibrated with deposited gold, $4 f_{72}=84.0 \mathrm{eV}$.
${ }^{d}$ The pair of $\mathrm{Sc} 2 p$ transitions m in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ with the lower binding energy is assigned to metal chain, while the n pair is taken to originate with the isolated scandium(III).
though the two sources generally cannot be distinguished unless sample charging occurs.)

Other pertinent XPS data for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}, \mathrm{Sc}_{7}$ $\mathrm{Cl}_{10} \mathrm{C}_{2}, \mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}, \mathrm{ScCl}_{3}$, and Sc are summarized in Table VI. The scandium $2 p$ core peaks for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ present an interesting relationship. As shown in Fig. 5 , the older $\mathrm{Sc} 2 p$ spectrum for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ (top)

Fig. 5. Scandium and chlorine $2 p$ spectra in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ with Sc $2 p_{3 / 2-1 / 2}$ assignments for the metal chain (m) and scandium(III) (n) states.
has been given a somewhat tentative assignment in terms of the two kinds of scandium known to occur in the compound, a broadened $2 p_{3 / 2}-2 p_{1 / 2}$ pair (m) starting at about 399 eV for the collection of metal in the metal chains together with a smaller overlapping pair (n) from the isolated chain at $\sim 404 \mathrm{eV}$ (32). Although possible alternatives in terms of shake-up (secondary) processes made the earlier assignment seem a little tenuous, quite similar results are obtained for $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ and this encourages the spectral comparison and assignments shown. Some surface oxidation may also contribute to n.

The $3 / 2-1 / 2$ pairs of Sc $2 p$ transitions so assigned to the metal and scandium(III) chains in $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ are found to agree very well with the energies of these emissions obtained for the metal and the trichloride, respectively. The metal chain in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ is clearly more oxidized as these Sc $2 p$ binding energies increase $\sim 2 \mathrm{eV}$ while the other pair assigned to the isolated atom change only $\sim 0.6 \mathrm{eV}$, in the opposite direction in fact. The metal $2 p$ energies in Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ are also very comparable to those found for $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$, which is formally a scandium(III) compound. Of course, general comparisons of this sort may be misleading in that the apparent changes in core levels to higher binding energy on oxidation may actually reflect more of the natural shift of the Fermi level reference to higher values (31). This can be avoided by comparing changes in the scandium $2 p_{3 / 2}$ energies with those for chlorine $2 p_{3 / 2}$ as an internal standard, which for the present examples leaves the conclusions relatively unaffected (Table VI).

Finally, Fig. 6 compares the XPS results for the valence region of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$. A metal band in the neighborhood of $0-3 \mathrm{eV}$ with an edge at or near E_{F} is indicated for $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, a feature that is more distinct at $0-3.5 \mathrm{eV}$ in the $\mathrm{He}(\mathrm{I})$ spectrum (32). On the other hand, a metal band is

Fig. 6. Valence spectra of $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$ and $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ ($\mathrm{Al} K \alpha$).
either absent or greatly reduced in Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ according to the XPS results. One can imagine instead some broadening in the neighborhood of 3 eV corresponding to the nominal C $2 p$ band, particularly with the knowledge that such a feature clearly appears at 3.6 and 4.3 eV in $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ and Zr_{2} $\mathrm{Cl}_{2} \mathrm{C}$, respectively $(3,11)$, where the carbon content is higher.

Interstitial Atoms

Although a good number of clusters and infinite metal-bonded arrays formed by metals of transition groups III and IV appear quite free of interstitial atoms from the second or higher periods- $\mathrm{Sc}_{5} \mathrm{Cl}_{8}, \mathrm{Sc}_{7} \mathrm{Cl}_{10}$, $\mathrm{ScCl}, \mathrm{Y}_{2} \mathrm{Cl}_{3}, \mathrm{YCl}$, and ZrCl , for example $(26,29)$-a number of others in addition to $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ appear to be stabilized by a small second-period nonmetal. The previously reported $\mathrm{Sc}\left(\mathrm{Sc}_{6} \mathrm{Cl}_{12}\right)$ (33) is of this character as it exhibited the characteristic problems of an unreproducible synthesis with low
yields at best and a structure solution with a small electron density residual at the cluster center ($Z \sim 5.3$). General recognition of the likelihood that adventitious impurities rather than errors in the crystallographic data or their analysis may be responsible in such instances has led us to the purposeful additions of a variety of potential impurities to synthetic experiments. In the case of $\mathrm{Sc}_{7} \mathrm{Cl}_{12}$, nitrogen was discovered to give the same phase, $\mathrm{Sc}\left(\mathrm{Sc}_{6} \mathrm{Cl}_{12} \mathrm{~N}\right)$, in good yield (3).

The possibility of interstitial bonding of nonmetals between the double-metal-layers in the zirconium monohalide structures has also been explored without the impetus of a serendipitous discovery. This led first to the insertion of hydrogen and oxygen in the tetrahedral metal sites in the zirconium phases (8,12) and subsequently to success with hydrogen, nitrogen, carbon, and boron (Z), these going primarily into octahedral sites to form phases of composition $M_{2} X_{2} Z$ ($M=\mathrm{Zr}, \mathrm{Sc}, \mathrm{Y}$) or $\mathrm{Zr} X \mathrm{H}$ in either one- (1T) or three-slab (3R) structures. Some results are summarized in Table VII to illustrate the breadth of the chemistry. All of these involve two-phase reactions except with oxygen and possibly nitrogen in tetrahedral

TABLE VII
Interstitial Derivatives of Double-Metal-Layered $M X$ Phases

	Formal $M-M$ bonding $e^{\prime} \mathrm{s} / M^{a}$	Ref.
Tetrahedral sites		
H: 3R-ScClH, YClH	1	3,9
$\mathrm{M}-\mathrm{ZrXH} \mathrm{O}_{5}{ }^{\text {b }}$	2.5	8
$\mathrm{O}: 3 \mathrm{R}-\mathrm{ZrClO}_{0.43}, \mathrm{ZrBrO}_{0.35}$	-2.2	12
N: 3R-ZrClN ${ }_{1-x}$	$3 \times$	34
Octahedral sites		
$\mathrm{H}: 1 \mathrm{~T}-\mathrm{Zr} X \mathrm{H}(X=\mathrm{Cl}, \mathrm{Br})$	2	9
$\mathrm{N}: 1 \mathrm{~T}-\mathrm{Zr}_{2} \mathrm{Cl}_{2} \mathrm{~N}$	1.5	34
$1 \mathrm{~T}-\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{~N}$	0.5	3
C: $1 \mathrm{~T}-\mathrm{Zr}_{2} \mathrm{X}_{2} \mathrm{C}$	1	H1
1T-, 3R-Sc2 $\mathrm{Cl}_{2} \mathrm{C}, 1 \mathrm{~T}-\mathrm{Y}_{2} \mathrm{Cl}_{2} \mathrm{C}$	0	3,10
B: $1 \mathrm{~T}-\mathrm{Zr}_{2} \mathrm{Cl}_{2} \mathrm{~B}$	0.5	34

[^5]interstices in $\mathrm{Zr} X$ where the uptake occurs within a single phase, quite analogous to their behavior in zirconium metal itself (12). The occurrence of carbon atoms in condensed gadolinium halide clusters has also been noted (4).

The bonding of the nonmetal in these appears to be strong and the stabilizing effect appreciable since $\mathrm{Sc}_{7} \mathrm{Cl}_{12}$, edge-bridged $\mathrm{Sc}_{7} \mathrm{Cl}_{10}$, and 1T-MX phases, for example, are not found otherwise. The separation of the double-metal-layers in ScCl is significantly decreased on formation of $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$. Some feeling for the bonding in $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ can be obtained from the results of extended Hückel calculations on some of the centered clusters and on $\mathrm{Zr}_{2} \mathrm{Cl}_{2} \mathrm{C}$. The metal-based molecular orbitals for an isolated (or shared) M_{6} cluster will always include bonding combinations of metal orbitals that transform the same as the $2 s$ and $2 p$ orbitals on a centered, interstitial atom. For the elements considered, these will combine to produce four bonding levels that lie significantly below both the metal cluster M.O.'s and the interstitial atom A.O.'s. Full occupation of the new and more bonding levels means that a carbon interstitial and the metal-based system each provide four orbitals and four electrons to fill the new band, four new and high-lying antibonding orbitals also appearing. The occupied, bonding levels derived from carbon $2 p$ (plus Zr , of course) lie 4.3 eV below E_{F} in $\mathrm{Zr}_{2} \mathrm{Cl}_{2} \mathrm{C}$ vs 2.0 eV for the metal d band maximum in $\mathrm{ZrCl}(11,15)$. These bonding orbitals involve substantial mixing of metal and carbon and are bonding for both metalmetal and metal-carbon, more so for the latter. It is misleading to think of the interstitial as C^{4-} in character although the familiar process of electron counting for oxidation state assignment or filling of valence bands may be so misconstrued. Extensive band calculations on the rock-salt monocarbides of $\mathrm{Ti}, \mathrm{Zr}, \mathrm{V}$, and Nb emphasize both the metal-carbon covalency and the small
negative charge acquired by carbon, estimated values for the latter lying between 0.4 and $1(35,36)$. The $3.0-\mathrm{eV}$ difference in Sc $2 p$ binding energy found between $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ and ScCl_{3} for either a $\mathrm{Cl} 2 p$ or E_{F} reference (Table VI) is striking evidence for the $\mathrm{Sc}-\mathrm{C}$ covalency. In fact, the compound $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ with an average oxidation state of 2.57 is indistinguishable from $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ by this means. The covalency and electron redistribution on formation of metal hydrides such as ZrXH and ZrH_{2} are conceptually quite similar, the comparable XPS shift being $\sim 1 \mathrm{eV}$ (15). Qualitative features of the bonding scheme have been described by Lauher for metal carbonyl carbide clusters (37).

In the case of $\mathrm{Zr}_{2} \mathrm{Cl}_{2} \mathrm{C}$ there is still one electron per metal atom left in the metal conduction band after the valence bands are filled, and the phase is metallic both by XPS and by theory (10), while $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ and $\mathrm{Sc}_{2} \mathrm{Cl}_{2} \mathrm{C}$ (a valence compound) both appear to be semiconductors by XPS, the highest levels in the latter probably being carbon $2 p$ (plus Sc) in character and well separated from E_{F}. This last condition is not always the case, ZrC , for example, being metallic through overlap of the valence and conduction bands (for more discussion see (16,35)). Studies of the more favorable ultraviolet photoelectron spectrum of Sc_{7} $\mathrm{Cl}_{10} \mathrm{C}_{2}$ are planned in an attempt to clarify the locations of the carbon-generated and metal valence bands.

Acknowledgments

The authors are indebted to J. W. Anderegg for measurement of the photoelectron emission spectra of the reduced systems, to R. J. Thom (Argonne) for XPS data for Sc and ScCl_{3}, to R. A. Jacobson for the availability of excellent X-Ray diffraction and computational facilities, and to G. Meyer for the MAPLE calculations on different models of $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$.

References

I. A. Simon, Z. Anorg. Allg. Chem. 355, 311 (1967).
2. H. Imoto and J. D. Corbett, Inorg. Chem. 19, 1241 (1980).
3. S.-J. Hwu and J. D. Corbett, unpublished research (1984).
4. E. Warkentin and A. Simon, Rev. Chem. Miner. 21, 488 (1984).
5. E. Warkentin and A. Simon, unpublished research (1983).
6. E. Warkentin, R. Masse, and A. Simon, Z. Anorg. Allg. Chem. 491, 323 (1982).
7. A. Simon and E. Warkentin, Z. Anorg. Allg. Chem. 497, 79 (1983).
8. H. S. Marek, J. D. Corbett, and R. L. Daake, J. Less-Common Met. 89, 243 (1983).
9. S. Wijeyesekera and J. D. Corbett, unpublished research.
10. J. E. Ford, J. D. Corbett, and S.-J. Hwu, Inorg. Chem. 22, 2789 (1983).
11. R. P. Ziebarth, S. v. Winbush, S.-J. Hwu, J. E. Ford, and J. D. Corbett, submitted for publication.
12. L. M. Seaverson and J. D. Corbett, Inorg. Chem. 22, 3202 (1983).
13. A. Simon, private communication, 1983.
14. E. Fromm and E. Gebhardt, "Gase und Kohlenstoff in Metallen," Springer-Verlag, Heidelberg, West Germany (1976).
15. J. D. Corbett and H. S. Marek, Inorg. Chem. 22, 3194 (1983).
16. S. Wijeyesekera and R. Hoffmann, Organometallics 3, 949 (1984).
17. K. R. Poeppelmeier and J. D. Corbett, Inorg. Chem. 16, 1107 (1977).
18. K. R. Poeppelmeier and J. D. Corbett, J. Amer. Chem. Soc. 100, 5039 (1978).
19. K. R. Poeppelmeier and J. D. Corbett, Inorg. Chem. 16, 294 (1977).
20. J. D. Corbett, Inorg. Synth. 22, 15, 39 (1983).
21. R. L. Lapp and R. A. Jacobson, DOE Report IS4708, Ames Laboratory, Iowa State University (1979).
22. D. R. Powell and R. A. Jacobson, DOE Report IS-4737, Ames Laboratory, Iowa State University (1980).
23. D. S. Rustad and N. W. Gregory, Inorg. Chem. 21, 2929 (1982).
24. K. Berroth and A. Simon, J. Less-Common Met. 76, 41 (1981).
25. B. A. Karcher, Ph.D. dissertation, Iowa State University (1981).
26. J. D. Corbett, Adv. Chem. Ser. 186, 329 (1980).
27. N. H. Krikorian, A. L. Bowman, and M. C. Krupka, High-Temp. Sci. 1, 360 (1969).
28. R. Hoppe, Angew. Chem. 20, 70 (1981).
29. J. D. Corbett, Pure Appl. Chem. 56, 1527 (1984).
30. A. Simon, Angew. Chem. Int. Ed. Engl. 20, 1 (1981).
31. J. D. Corbett, G. Meyer and J. W. Anderegg, Inorg. Chem. 23, 2625 (1984).
32. K. R. Poeppelmeier, Ph.D. thesis, Iowa State University (1977).
33. J. D. Corbett, K. R. Poeppelmeier, and R. L. DaAke, Z. Anorg. Allg. Chem. 491, 51 (1982).
34. R. P. Ziebarth and J. D. Corbett, unpublished research.
35. A. Neckel, Int. J. Quant. Chem. 23, 1317 (1983).
36. B. M. Klein, D. A. Papaconstantopoulos, and L. L. Boyer, Phys. Rev. B 22, 1946 (1980).
37. J. W. Lauher, J. Amer. Chem. Soc. 100, 5305 (1978).

[^0]: * Presented at the Symposium on Metal-Metal Bonding in Solid State Clusters and Extended Arrays, held during the American Chemical Society meeting, St. Louis, Missouri, April 9-10, 1984.
 \dagger Operated for the U.S. Department of Energy by Iowa State University under Contract W-7405-Eng-82. This research was supported by the Office of Basic Energy Sciences, Materials Sciences Division.

[^1]: ${ }^{1}$ There are in addition a number of lanthanide halides that contain dicarbon units in metal clusters or chains. According to simple electron counting, most of these phases are free of electrons for metal-metal bonding, and the clustering of the metals has been attributed principally to the strong metal-dicarbon bonding, for example, in $\mathrm{Gd}_{5} \mathrm{Cl}_{9} \mathrm{C}_{2}(6)$ and $\mathrm{Gd}_{12} \mathrm{I}_{17}\left(\mathrm{C}_{2}\right)_{3}$ (7).

[^2]: ${ }^{2}$ The stronger 40% of the diffraction lines observed for $\mathrm{Sc}_{7} \mathrm{Cl}_{10} \mathrm{C}_{2}$ by Guinier techniques are, in $2 \theta\left(\mathrm{CuK} \alpha_{1}\right)$ with relative intensities in parenthesis: 13.28 (50), 29.75 (70), 30.59 (15), 34.07 (30), 34.42 (100), 35.94 (40), 36.98 (20), 39.14 (80), 51.27 (20), 52.25 (90), 53.30 (30), 53.82 (50). Some intensity variations from theory are to be expected because of preferred orientation of the needles on the mounting tape.

[^3]: ${ }^{a}$ Crystals in the order cited under Syntheses section.
 ${ }^{b}$ Data taken on Syntex $\mathrm{P} 2_{1}$ diffractometer with a $\theta-2 \theta$ scan; the other two studies utilized an Ames Laboratory instrument in an Ω-scan mode.
 ${ }^{c}$ Guinier data, $\mathrm{Cu} K \alpha$.
 ${ }^{d}$ Parameter fixed; the \boldsymbol{B} is an average of the isotropic values for Sc and Cl .

[^4]: ${ }^{a}$ To all first neighbors listed in Table IV; all atoms have two additional neighbors of like kind at $3.49 \AA$, the b axis repeat.
 ${ }^{b} \mathrm{Sc}_{7} \mathrm{Cl}_{10}$ has the same coordination for Sc and Cl except for four Cl about $\mathrm{Sc} 2 ; \mathrm{Sc}_{5} \mathrm{Cl}_{8}$ is the same lacking Sc4.

[^5]: ${ }^{a}$ The electron count after filling the anion band.
 ${ }^{b}$ Monoclinic.

